An example of a rigid superuniversal metric space

Wojciech Bielas (University of Silesia)

Hejnice, January 27, 2014

Definition

We say that a metric space X is κ -homogeneous, if for every $A, B \in [X]^{<\kappa}$ and every isometry $f_0 : A \to B$ there is an isometry $f : X \to X$ such that $f \upharpoonright A = f_0$. We say that a metric space X is [strongly] κ -universal if every metric space Y such that $|Y| \leq \kappa [w(Y) \leq \kappa]$ can be isometrically embedded into X.

Theorem (Katětov, 1986)

For every uncountable κ such that $\kappa = \sup\{\kappa^{\lambda} : \lambda < \kappa\}$ there exists a unique (up to isometry) κ -homogeneous and strongly κ -universal metric space.

Definition (Hechler)

Let κ be an uncountable cardinal. We say that a metric space X is κ -superuniversal if for every metric space Y of cardinality at most κ and every isometric embedding $f_0: Y_0 \to X$, where $Y_0 \in [Y]^{<\kappa}$, there is an isometric embedding $f: Y \to X$ such that $f \upharpoonright Y_0 = f_0$.

Theorem (Hechler, 1973)

For every uncountable regular cardinal κ there exists a κ -superuniversal metric space of cardinality $\sum_{\lambda < \kappa} 2^{\lambda}$.

Remark

Every κ -superuniversal metric space of cardinality κ is κ -homogeneous.

Kubiś suggested that there should exists a κ -superuniversal metric space which is not κ -homogeneous.

It occurs that κ -superuniversal space can be rigid (i.e. has only one isometry, its identity function):

Theorem (W.B.)

Assume that κ is a regular cardinal such that $\lambda^{\omega} < \kappa$ for every $\lambda < \kappa$. Then there exists a rigid κ -superuniversal metric space.

 κ -superuniversality can be achieved by adding to a metric space X a family of points $\{x_{\alpha} : \alpha < \lambda\}$ and defining a metric d on

$$K(X) = X \cup \{x_{\alpha} : \alpha < \lambda\}$$

such that if $f_0: Y \setminus \{y\} \to X$ is an isometric embedding, where $|Y| < \kappa$, then there is x_α such that there is an isometry $f: Y \to X \cup \{x_\alpha\}$ such that $f \upharpoonright (Y \setminus \{y\}) = f_0$.

These points can be considered as Katětov's maps. Defining

$$\mathcal{K}^{eta+1}(X) = \mathcal{K}(\mathcal{K}^{eta}(X))$$
 and $\mathcal{K}^{lpha}(X) = \bigcup_{eta < lpha} \mathcal{K}^{eta}(X)$ for $lpha$ limit,

we see that $K^{\kappa}(X)$ is κ -superuniversal.

Definition (Hechler)

We say that a metric space (X, d) is *unitary* if d(x, y) = 1 for every $x, y \in X$, $x \neq y$.

A unitary subspace $D \subseteq X$ can have a *weak middle point*, i.e. a point $x \in X$ such that d(x, y) = d(x, y') < 1 for all $y, y' \in D$. The idea of obtaining the rigidity was to define *unitary character of* $x \in X$ by

$$\tau_w(x,X) = \sup\{|D| : D \in \mathcal{D}_w(x,X)\},\$$

where

$$\mathcal{D}_w(x, X) = \{ D \subseteq X : D \text{ is unitary, } x \in D \text{ and there is no} \\$$
weak middle point of any $D' \in [D]^{\kappa} \}.$

Adding sufficiently many unitary subspaces, we would be able to show that $\tau_w(x, X) \neq \tau_w(y, X)$ for $x \neq y$.

Assume that X is a subspace of a metric space Y, and each $x \in X$ has its own unitary subspace $D_x \subseteq X$. Then for the set $\{y_\alpha : \alpha < \lambda\} = Y \setminus X$ we consider a family $\{D_\alpha : \alpha < \lambda\}$ of unitary spaces such that

- $|D_{\alpha}| > |X|$,
- if $\alpha \neq \beta$ then $D_{\alpha} \cap D_{\beta} = \emptyset$,

•
$$D_{\alpha} \cap Y = \{y_{\alpha}\}.$$

There exists a metric *d* on the set $A(Y, X) = Y \cup \bigcup \{D_{\alpha} : \alpha < \lambda\}$ such that D_{α} and *Y* are subspaces of A(Y, X), and

$$d(w, v) = d(w, y_{\alpha}) + d(y_{\alpha}, y_{\beta}) + d(y_{\beta}, v)$$

for all $w \in D_{\alpha}$ and $v \in D_{\beta}$. We see that $D_{\alpha} \in \mathcal{D}_w(y_{\alpha}, \mathcal{A}(Y, X))$.

We start with a metric space X_0 such that $|X_0| \leq \kappa$. We define

$$X_{\alpha+1} = \mathcal{K}(X_{\alpha}), \quad X_{\alpha} = \bigcup \{X_{\beta} : \beta < \alpha\} \quad \text{ for } \alpha \text{ limit,}$$

and $X_{\beta+2} = K(A(X_{\beta+1}, X_{\beta}))$ in the other cases. It is easy to observe that X_{κ} is κ -superuniversal.

Katětov's maps are added in such a way that for every $y \in K(X) \setminus X$ there exists $Z \in [X]^{<\kappa}$ such that for all $x \in X$:

$$d(y,x) = \inf\{d(y,z) + d(z,x) : z \in Z\},\$$

which allows us to show that $\mathcal{D}_w(x, X) \subseteq \mathcal{D}_w(x, \mathcal{K}(X))$.

Assume that $D \notin \mathcal{D}_w(x, \mathcal{K}(X))$. There exists a weak middle point $y \in \mathcal{K}(X) \setminus X$ of some $D' \in [D]^{\kappa}$. Then for all $t \in D'$ there is $z \in Z$ such that

$$d(y,t) \leqslant d(y,z) + d(z,t) < 1.$$

Using the fact that $\kappa = \operatorname{cf} \kappa > |Z|$ we obtain $D'' \in [D']^{\kappa}$ and $z \in Z$ such that d(y, z) + d(z, t) < 1 for all $t \in D''$. In particular d(z, t) < 1 for every $t \in D''$. Once again, using $\kappa = \operatorname{cf} \kappa > \mathfrak{c}$, we can assume that

$$d(z,t)=d(z,t')<1$$

for all $t, t' \in D''$. Thus $z \in Z \subseteq X$ is a weak middle point of D'', hence $D \notin \mathcal{D}_w(x, X)$.

Removing unwanted unitary subspaces

Fix a unitary subspace $D \subseteq X$. It suffices to choose some $D' \in [D]^{\kappa}$ and add a weak middle point y of D'. Then D will not be considered in the computing of $\tau_w(x, X \cup \{y\})$ for all $x \in D$, i.e. $D \notin \mathcal{D}_w(x, X \cup \{y\})$. We can do that for all the unwanted unitary subspaces at the same time.

Observe that if we want to remove a unitary subspace D' and $\{D_{\alpha} : \alpha < \lambda\}$ is a family of unitary subspaces we want to preserve, then D' has to satisfy

$$|D' \cap D_{\alpha}| < \kappa$$
 for all $\alpha < \lambda$.

Unfortunately, it is not sufficient: if $D' = \{y_{\beta} : \beta < \kappa\}$, $\{x_{\beta} : \beta < \kappa\} \subseteq D_{\alpha}$ for some $\alpha < \lambda$, and $d(x_{\beta}, y_{\beta}) < \frac{1}{2}$, then adding x such that $d(x, y_{\beta}) = \frac{1}{2}$ it is difficult to ensure that x is not a weak middle point of $\{x_{\beta} : \beta < \kappa\}$. There is a special kind of a weak middle point: if $D \subseteq X$ is a unitary subspace then we say that $x \in X$ is a *middle point of D* if $d(x, y) = \frac{1}{2}$ for all $y \in D$. Analogously we define

$$\tau(x,X) = \sup\{|D| : D \in \mathcal{D}(x,X)\}$$

where

$$\mathcal{D}(x,X) = \{ D \subseteq X : D \text{ is unitary}, x \in D \text{ and there is no} \\ \text{middle point of any } D' \in [D]^{\kappa} \},$$

and this definition of unitary character has been used in the proof of the rigidity.

If we define a sequence $(\mu_{\alpha} : \alpha \leqslant \kappa^{+})$ by

$$\mu_0 = \kappa, \quad \mu_{\alpha+1} = (\aleph_{\mu_{\alpha}\cdot 3})^{\kappa} \text{ and } \mu_{\beta} = \sup\{\mu_{\alpha} : \alpha < \beta\}$$

for a limit ordinal β , then the cardinality of the example can be estimated by the number μ_{κ^+} , but its cofinality is κ^+ .

Unitary character for an inaccessible cardinal

Let us assume that $\lambda > \kappa$ is an inaccessible cardinal, i.e. $\lambda = cf \lambda$ and $2^{\mu} < \lambda$ for $\mu < \lambda$.

We can iterate operations of adding Katětov's maps, unitary subspaces (and removing unwanted unitary subspaces) λ many times. The resultant space will be rigid κ -superuniversal of cardinality λ .

This time we use the unitary character defined by the formula

$$\tau_{<}(x,X) = \sup\{|D| : D \in \mathcal{D}_{<}(x,X)\},\$$

where

$$\mathcal{D}_{<}(x,X) = \{ D \subseteq X : D \text{ is unitary}, |D| < |X|, x \in D \\ \text{and there is no middle point of any } D' \in [D]^{\kappa} \}.$$

- S. H. Hechler, Large superuniversal metric spaces, Israel J. Math. 14(2) 1973, 115–148.
- M. Katětov, On universal metric spaces, in: General Topology and its Relations to Modern Analysis and Algebra VI, Proc. Sixth Prague Topological Symposium 1986, Z. Frolík (ed.), Berlin 1988.